A Succinct Route to the Synthesis of Multi-Labelled [D, ¹³C] α-Methyl Aromatic Ketones

Gregory Socrates Coumbarides, Jason Eames* and Neluka Weerasooriya

Department of Chemistry, Queen Mary, University of London, London E1 4NS, UK

(Received July 13, 2001)

A series of multi-labelled aromatic ketones were efficiently synthesized using a simple deprotonation—deuteriation/alkylation strategy. The yields were high and the products are synthetically useful.

The development of novel synthetic methods and the extension of existing methodology for the incorporation of non-radioactive isotopic labels within organic molecules is an important area. In many cases, the incorporation of a [D] or [13C] isotopic label has relied on simple carbon-hydrogen bond exchange reactions.² This exchange occurs readily at relatively acidic positions,³ most notably those adjacent to a carbonyl group.4 Many of these reactions are under thermodynamic control⁵ to enhance the incorporation.⁶ However, there are problems associated with this approach, such as product separation primarily due to incomplete substitution or in some cases over-incorporation. Whereas, isotopic incorporation under kinetic control⁸ could potentially solve many of these associated problems. We have recently reported an efficient and reliable method for the regioselective C-deuteriation of enolates under "base-free" conditions (Scheme 1).9 Treatment of the silyl enol ether, e.g., (3) [derived from the 2-methyltetralone (2) in 76% yield] with MeLi, followed by the addition of a suitable carbonyl directing deuterium donor like acetic acid-d4, gave the isotopically labelled 2-deuterio-2-methyltetralone $(2-d_1)$ with near complete *D*-incorporation ([D]:[H] = 95:5:68%). This deuteriation step must proceed via a "base-free" enolate and does relies on the efficient synthesis of the silyl enol ether

> 1. LDA, THF, -78°C 2. CH₃I
>
> 2
>
> 1. LDA, THF, -78°C 2. Me₃SiCI
>
> OSiMe₃
>
> 1. CH₃Li, THF, -78°C
>
> 2. acetic acid-d₄
>
> ((D!:(H)) = 95:5; 68%

Scheme 1. Synthesis of 2-methyltetralone $2-d_1$.

3 as the enolate precursor, otherwise the levels of D-incorporation is significantly lower due to proton return when using traditional "base" enolates.⁹

We originally chose this aromatic ketone framework due to its UV activity, non-volatile nature and predictable enolate configuration. This predictability is important, in that it allows further incorporation to occur on the same α -carbon atom. We now report an extension of this methodology in the synthesis of multi-labelled aromatic ketones containing combinations of both [D] and [13 C] labels.

We chose to synthesise these multi-labelled ([D] and [¹³C]) variants using related α -methyl aromatic ketone based skeletons involving different isotopically labelled methyl groups (e.g., CD₃, ¹³CH₃ and ¹³CD₃) (Scheme 2). We assumed that incorporation of these different methyl substituents could be efficiently achieved using the appropriate commercially available isotopically labelled methyl iodide, CD₃I, ¹³CH₃I and ¹³CD₃I. This strategy allows simple and selective incorporation to occur through kinetic control, which we believed, would minimize over-incorporation. We were initially required to synthesise a series of 2-trideuteriomethyl (CD₃), 2-trideuteriomethyl-[¹³C] (¹³CD₃) and methyl-[¹³C] (¹³CH₃) isotopically labelled methyl aromatic ketones (5a,b), (8a-c) and (12a,b). This method is ideal since quantitative incorporation must occur through simple carbon-carbon bond formation. The required aryl aromatic (5a,b), (8a-c) and (12a,b) were synthesized in excellent yield by methylation of the enolate [derived from indanone (4), tetralone (1), benzosuberone (11) and LDA] with the corresponding labelled methyl iodide (CD₃I, ¹³CH₃I and ¹³CD₃I). These ketones were efficiently converted into the related silyl enol ethers 6, 9 and 13 by addition of LDA in THF at -78 °C, followed by the addition of neat Me₃SiCl.

Deuteriation of these silyl enol ethers (6), (9) and (13) were achieved using our standard procedure, 9 by initially converting these into their corresponding "base-free" enolate, by the direct addition of MeLi using Stork's protocol. 10 Simple addition of acetic acid- d_4 (2 molar amounts) to a stirred solution of each enolate at -78 °C gave the multi-labelled aromatic ketones (7a,b), (10a-c) and (14a,b) in excellent yield (Table 1) with near complete *D*-incorporation (determined by 1 H NMR).

In conclusion, we have report an efficient route to the selective isotopic exchange of both C–H bonds adjacent to a carbonyl motif. For those cases, which involved the substituent combination [CD₃, D] and [¹³CD₃, D] resulted in the removal of their associated signal in the ¹H NMR with respect to the

Scheme 2.

Table 1. The synthesis of multi-labelled ketones **7a**,**b**, **10a**–**c**, and **14a**,**b**.

Entry	Starting material	Methyl ketone	Silyl enol ether	Labelled ketone
1		CD3	OSiMe ₃	D _{CD3}
2	4	5a; 56%	6a ; 78% OSiMe ₃	7a; ([D]:[H]) = 83:17; 71%
	4	5b ; 57%	6b ; 72%	7b ; ([D]:[H]) = 85:15; 72%
3		CD ₃	OSiMe ₃	CD ₃
	1	8a ; 58%	9a; 78%	10a ; ([D]:[H]) = 95:5; 61%
4		13CH ₃	OSiMe ₃	D 13CH ₃
	1	8b; 48%	9b ; 89%	10b ; ([D]:[H]) = 98:2; 72%
5		O 13CD ₃	OSiMe ₃	D 13CD3
	1	8c; 57%	9c ; 88%	10c ; ([D]:[H]) = 79:21; 82%
6		CD ₃	Me ₃ SiO CD ₃	CD ₃
	11	12a ; 56%	13a ; 76%	14a ; ([D]:[H]) = 95:5; 73%
7	11	12b; 61%	Me ₃ SiQ ¹³ CH ₃ 13b; 81%	p 13CH ₃ 14b; ([D]:[H]) = 95:5;77%
	**		,	

non-isotopic variant. Whereas, those involving a combination of [13 CH₃, D] gave a characteristic double (J = 127.4 Hz) for the methyl group in the 1 H NMR spectrum. The synthesis of related multi-labelled 2,2-[D, 13 C] ketones using a deprotonation strategy under thermodynamic control has previously been reported. 11,12 Virtually, all these reports deal with the synthesis of fully deuteriated carbonyl derivatives, 11 whereas reports into the synthesis of selective 2,2-[D, 13 C] labelled ketones are much rarer. However, there are some reports into the synthesis of related ketones using a different carbon-carbon bond forming strategy. 13

Typical procedure: A solution of MeLi (0.1 mL, 1.6 M in diethyl ether, 0.16 mmol) was added drop-wise to the silyl enol ether (9a) (40 mg, 0.15 mmol), at room temperature. This resulting solution was stirred for 1 hour at room temperature and then cooled at -78 °C. Acetic acid- d_4 (10 mg, 10 µL, 0.3 mmol) in THF (1 mL) was added drop-wise to this solution and stirred for a further 30 minutes. The reaction was quenched by the addition of water (10 mL). The solution was extracted with ether (3 × 20 mL), dried (MgSO₄) and evaporated under vacuum. The residue was purified by flash chromatography on silica gel eluting with light petroleum (40–60 °C):ether (9:1) to give 2-deuterio-2-trideuteriomethyltetralone (10a- d_4) (20 mg, 61%) as an oil; R_f [light petroleum (40–60 °C):ether (9:1)] 0.5; V_{max} (film)/cm⁻¹ 2059 (CD) and 1680

(CO); $\delta_{\rm H}$ (600 MHz, CDCl₃) 8.04 (1 H, dd, J=7.7 and 1.5 Hz, CH; Ar), 7.45 (1 H, td, J=7.7 and 1.5 Hz, CH; Ar), 7.31 (1 H, t, J=7.7 Hz, CH; Ar), 7.23 (1 H, d, J=7.7 Hz, CH; Ar), 3.02 (2 H, m, CH₂), 2.19 (1H, dt, J=8.8 and 4.4 Hz, CH_ACH_B) and 1.88 (1H, m, CH_ACH_B); $\delta_{\rm c}$ (150 MHz, CDCl₃) 200.8, 144.1, 133.0, 132.3, 128.6, 127.3, 126.8, 41.8 ($J_{\rm C-D}=19.5$ Hz), 31.8 and 28.7; m/z 164 (100%, M). The absence of the septet at around 17 ppm for CD₃ signal in the ¹³C NMR spectra is common due to a long relaxation time associated with this substituent.

We thank Queen Mary, University of London for a college studentship (to N.W.), the London University Central Research Fund, The Nuffield Foundation (NUF-NAF 99) and GOSS Scientific Instruments Ltd for their generous financial assistance.

References

- 1 D. IwataReuyl, A. Basak, and C. A. Townsend, *J. Am. Chem. Soc.*, **121**, 11356 (1999).
- 2 D-incorporation see C. A. Kingsbury, *J. Org. Chem.*, **63**, 3838 (1968); for ¹³C incorporation see S.-F. Lee, M. Edgar, S. C. Pak, G. Barth and C. Djerassi, *J. Am. Chem. Soc.*, **102**, 4784 (1980); for CD₃ incorporation see N. M. Kelly, R.G. Reid, C. L. Willis, and P. L. Winton, *Tetrahedron Lett.*, **37**, 1517 (1996).
- 3 U. Gerlach, T. Haubenreich, S. Hünig, and Y. Keita, *Chem. Ber.*, **126**, 1205 (1993).
- 4 a) U. Gerlach and S. Hünig, *Angew. Chem., Int. Ed. Engl.*, **26**, 1283 (1987). b) A. Soderquist, J. C. Facelli, W. J. Horton, and D. M. Grant, *J. Am. Chem. Soc.*, **117**, 8441 (1995).
- 5 R. D. Guthrie and E. C. Nicolas, *J. Am Chem. Soc.*, **103**, 4637 (1981).
- 6 A. E. Nemr and T. Tsuchiya, *Tetrahedron Lett.*, **39**, 3543 (1998) and references cited therein.
- 7 a) J. A. Kenar and A. Nickon, *Tetrahedron*, **53**, 14871 (1997). b) T. Kamada and O. Yamamoto, *Bull. Chem. Soc. Jpn.*, **53**, 994 (1980).
- 8 P. E. Pfeffer, L. S. Silbert, and J. M. Chrinko, Jr, *J. Org. Chem.*, **37**, 451 (1972).
- 9 G. S. Coumbarides, J. Eames, and N. Weerasooriya, *Tetrahedron Lett.*, **41**, 5753 (2000).
- 10 a) G. Stork and P. F. Hudrlik, *J. Am. Chem. Soc.*, **90**, 4462 (1968). b) G. Stork and P. F. Hudrlik, *J. Am. Chem. Soc.*, **90**, 4464 (1968).
- 11 For methods involving 2,2-[D, CD₃] incorporation, see a) F. Wudl, E. Aharon-Shalom and S. H. Bertz, *J. Org. Chem.*, **46**, 4612 (1981). b) S. Takatsuto, C. Gotoh, T. Noguchi, T. Nomura, S. Fujioka and T. Yokota, *J. Chem. Res.* (S), **1998**, 206. c) C. E. Johnson, K. A. Sannes and J. L. Brauman, *J. Phys. Chem.*, **100**, 8827 (1996).
- 12 For related methods involving 2,2-[D, ¹³CD] incorporation, see M. B. Stringer, D. J. Underwood and J. Bowie, *Org. Mass Spectrom.*, **27**, 270 (1992).
- 13 For methods involving 2,2-[D, ¹³C] incorporation, see H. Junge, H. Musso and U. I. Zahorszky, *Chem. Ber.*, **101**, 793 (1968) and for related methods involving 2,2-[D, ¹³CD] incorporation, see J. E. Baldwin and T. C. Barden, *J. Am. Chem. Soc.*, **106**, 5312 (1984).